INTRAMOLECULAR AMINO DELIVERY REACTIONS FOR THE SYNTHESIS OF VALIENAMINE AND ANALOGUES

Spencer Knapp,* Andrew B. J. Naughton, and T. G. Murali Dhar

Department of Chemistry, Rutgers The State University of New Jersey New Brunswick, New Jersey 08903 USA

Key words: carbonimidothioates; iodocyclization; [3,3] rearrangement; glucosidase inhibitors; pseudo-disaccharides

Abstract: Iodocyclization and [3,3] sigmatropic rearrangement reactions of N-substituted carbonimidothioates are used to prepare valienamine (1), 7-nor-valienamine (8), and the valienamine-based pscudo-disaccharide 12.

The fermentation-derived aminocyclitol valienamine $(1)^1$ and several close analogues² exhibit α glucosidase inhibitory activity by virtue of a protonated amino group aptly positioned where a protonated interpyranosidic oxygen might bind in the enzyme active site.³ Valienamine-based *pseudo*-oligosaccharides such as acarbose (2),⁴ adiposin-1 (3),⁵ and trestatin A⁶ show enhanced α -glycosidase inhibition, presumably because two or more *pseudo*-sugar units bind more strongly than one.⁴ Even simple alkyl substitution (e. g. 2phenethyl or β -hydroxyphenethyl) on the nitrogen of 1 enhances inhibition of porcine maltase and sucrase.⁷ Despite extensive investigations into the synthesis of *N*-substituted derivatives of 1, there is no generally efficient coupling method for forming either C-N bond. Halide displacements⁸ and reductive aminations⁹ give poor yields, and epoxide aminolysis methods¹⁰ suffer from regioselectivity problems. Our earlier work with *O*-allyl-carbonimidothioate rearrangements and iodocyclizations¹¹ in simple models suggested that *intramolecular* formation of the cyclitol carbon-nitrogen bond might be possible, even with bulky and/or functionalized *N*-substituents. We undertook the synthesis of 1 and some analogues to test this notion.

A route to N-substituted-7-nor-valienamine analogues (valienamine numbering used throughout) was developed based on [3,3]-sigmatropic rearrangements of N-substituted carbonimidothioates derived from the allylic alcohol 5 (mp 50-51 °C), which was prepared from D-glucose¹² as shown below. Condensation of the sodium salt of 5 with p-methoxybenzylisothiocyanate, followed by quenching with benzyl bromide, led to the carbonimidothioate 6, which underwent rearrangement in refluxing toluene to give the thiocarbamate 7. The analogous N-benzyl- and N-(3,4-dimethoxybenzyl)-carbonimidothioates also rearranged smoothly, hence

other simple N-alkyl substituents should probably also survive the rearrangement. Removal of the N-(p-methoxybenzyl) group, followed by exhaustive debenzylation, provided 7-*nor*-valienamine 8, isolated as its peracetate 9.13 To our knowledge this represents the first synthesis of this potentially useful aminocyclitol.

An analogous sequence using the glucose-derived isothiocyanate 10^{14} led to a carbonimidothioate that rearranged to 11 (52% overall). Exhaustive debenzylation gave the *pseudo*- α -D-Glc*p*(1 \rightarrow 6)-D-Glc*p* disaccharide 12, isolated and characterized as its peracetate 13 (80% overall, two amide rotamers, 5:1).¹³ The *pseudo*-disaccharide 12 structurally resembles the linkage cleaved by a glycogen (1 \rightarrow 6)-debranching enzyme.¹⁵ A rearrangement was attempted with the carbonimidothioate derived from the 4isothiocyanatoglucopyranoside 14,¹⁴ but only fragmentation leading to 15 and 16 was observed. No improvement was realized under conditions of mercury or palladium¹⁶ promotion, or 13 Kbar pressure, signifying that 14 may represent the steric limit for *N*-substituents in this rearrangement.

A complementary route based on the carbonimidothioate iodocyclization reaction was developed for the synthesis of valienamine (1) and N-substituted analogues. The requisite allylic alcohol 22 was prepared from resolved diol 17^{17} by the efficient sequence shown below. The hydroxyls of 17 were O-benzylated, and the double bond epoxidized with 3.5 : 1 selectivity.¹⁸ The major epoxide 18 was isomerized to allylic alcohol 19 by the Sharpless-Reich protocol,¹⁹ attack by PhSeNa occurring virtually exclusively at C-1 because of steric hindrance to attack at C-2. Hydroxyl-directed epoxidation followed by O-benzylation gave the epoxide 20, which was rearranged to the allylic alcohol 21 by another application of the Sharpless-Reich¹⁹ procedure. Here the observed 5 : 1 selectivity may be attributed to a more favorable trans-diaxial cyclohexane epoxide-opening conformation for attack at C-6. Inversion of the allylic hydroxyl was accomplished by a Mitsunobu sequence, giving the desired allylic alcohol substrate 22 in about 23% overall yield from 17.

Condensation of the potassium salt of 22 with *p*-methoxybenzylisothiocyanate, followed by iodomethane quench, led to the carbonimidothioate 23, iodocyclization of which gave after aqueous sodium sulfite quench the iodo oxazolidinone 24. Although not yet investigated, other simple alkyl *N*-substituents should tolerate the iodocyclization as well. Oxidation of 24 to the corresponding iodoso compound 25 resulted in spontaneous *syn* elimination²⁰ of HOI, with formation of the unsaturated oxazolidinone, and debenzylation gave valienamine (1), isolated and characterized as its known peracetate (+)-27.²¹

In summary, intramolecular formation of the C(6)-N bond of valienamine and 7-nor-valienamine by an iodocyclization and [3,3]-sigmatropic rearrangement sequence, respectively, has been demonstrated. In the rearrangement, a primary but not secondary carbohydrate N-substituent is tolerated. Further extension of the iodocyclization sequence to complex N-substituents such as those represented by the isothiocyanates 10 and 14 is under investigation.

Acknowledgments: We are grateful to the Charles and Johanna Busch Memorial Fund and Berlex Corporation for financial support of this work, Lever Bros. for a graduate fellowship to ABJN, NSF grant CHEM-8300444 and NIH grant 1510RRO1486 for support of instrumentation, Prof. Marcus A. Tius for the high pressure experiment, and Golfo Skokotas and Christopher Volpe for preparative help and model work.

References and Notes

- 1. Kameda, Y.; Horii, S. J. Chem. Soc. Chem. Commun. 1972, 746.
- 2. Kameda, Y. et al. J. Antibiot. 1984, 37, 1301.
- Kameda, Y.; Asano, N.; Yoshikawa, M.; Matsui, K. J. Antibiot. 1980, 33, 1576. Truscheit, E.; Frommer, W.; Junge, B.; Muller, L.; Schmidt, D.; Wingender, W. Angew. Chem. Internat. Ed. Eng. 1981, 20, 744.
- 4. Schmidt, D. D.; Frommer, W.; Junge, B.; Muller, L.; Wingender, W.; Truscheit, E. Naturwissenschaften 1977, 64, 536.
- 5. Itoh, J.; Omoyo, S.; Shomura, T.; Ogino, H.; Iwamatsu, K.; Inouye, S. J. Antibiot. 1981, 34, 1424.
- 6. Yokose, K.; Ogawa, K.; Sano, T.; Watanabe, K.; Maruyama, H.; Suhara, Y. J. Antibiot. 1983, 36, 1157.
- 7. Kameda, Y.; Asano, N.; Yoshikawa, M.; Matsui, K.; Horii, S.; Fukase, H. J. Antibiot. 1982, 35, 1624.
- 8. Toyokuni, T.; Ogawa, S.; Suami, T. Bull. Chem. Soc. Jpn. 1983, 56, 2999.
- 9. Horii, S. et al. J. Med. Chem. 1986, 29, 1038.
- 10. Ogawa, S.; Iwasawa, Y.; Toyokuni, T.; Suami, T. Carbohydr. Res. 1985, 141, 29.
- 11. Knapp, S.; Dhar, T. G. M. J. Org. Chem. 1991, 56, 4096 and references therein.
- Synthesis of 4: Semeria, D.; Philippe, M.; Delaumeny, J.-M.; Sepulchre, A.-M.; Gero, S. D. Synthesis 1983, 710. Reduction of 4: Jaramillo, C.; de la Pradilla, R. F.; Martin-Lomas, M. Carbohydr. Res. 1991, 209, 296. See also Vass, G.; Krausz, P.; Quiclet-Sire, B.; Delaumeny, J.-M.; Cleophax, J.; Gero, S. D. Compt. Rend. Acad. Sc. Paris, Serie II 1985, 301, 1345.
- 13. Compound **9**: ¹H NMR (CDCl₃, 400 MHz) δ 5.80 (ddd, J = 10.0, 4.9, 1.7, H-5), 5.72 (ddd, J = 10.0, 2.6, 0.7, H-4), 5.62 (br d, J = 9.0, N-H), 5.37 (dd, J = 10.2, 5.9, H-2), 5.29 (dddd, J = 5.9, 2.6, 1.7, 0.7, H-3), 5.06 (dd, J = 10.2, 4.8, H-1), 4.99 (ddt, J = 9.2, 4.7, 0.7, H-6), 2.01, 2.02, 2.06, 2.07 (s, 4 COC<u>H</u>₃'s); IR (thin film) 3390, 3300, 3060, 1760, 1679, 1666, 1540 cm⁻¹; $[\alpha]_D 7.1^\circ$ (25 °C, c=0.15, CHCl₃). Compound **13**: ¹H NMR (major rotamer, CDCl₃, 400 MHz) δ 5.89 (d, 1 H, J = 9.5), 5.77 (d, 1 H, J = 9.7), 5.67 (br s, 1 H), 5.37 5.50 (m, 3 H), 5.22 5.28 (m, 1 H), 4.95 (br s, 1 H), 4.80 4.88 (m, 2 H), 3.93 (t, 1 H, J = 9.1), 3.62 (dd, 1 H, J = 9, 14), 3.38 3.45 (m, 1 H), 3.37 (s, 3 H), 2.22, 2.09, 2.08, 2.05, 2.03, 2.02, 1.98 (s, 7 X 3 H); IR (thin film) 1751, 1655 cm⁻¹; $[\alpha]_D + 108.1^\circ$ (25 °C, c=0.16, CHCl₃); EI-MS *m*/*z* 615 (M+), 556 [(M OAc)+]. Exact mass calcd for [(M OAc)+], C₂₅H₃₄NO₁₃; 556.2030. Found: 556.2034.
- 14. Prepared from the corresponding azide according to: Olejniczak, B.; Zwierzak, A. Synthesis 1989, 300.
- 15. Liu, W.; Madsen, N. B.; Braun, C.; Withers, S. G. Biochemistry 1991, 30, 1419.
- 16. Overman, L. E. Acc. Chem. Res. 1980, 13, 218.
- Diol 17 was prepared by LiAlH₄ reduction (99%) of *cis*-3-acetoxycyclohexene-4-carboxylic acid (Alder, K.; Schumacher, M. *Liebigs Ann. Chem.* 1949, 565, 149), followed by conversion to the bis(camphanic ester), chromatographic purification of the high R_f diester, and hydrolysis (40% overall).
- The minor epoxide was independently converted to 19 (58% overall): (1) t-BuMe₂Si-OTf, 2,6-lutidine, -30 °C (attack by TfO⁻ at C-1); (2) DBU, toluene, 45 °C; (3) n-Bu₄NF, THF; (4) PhCO₂H, DEAD, PPh₃; (5) KOH, aq EtOH, THF.
- 19. Sharpless, K. B.; Lauer, R. F. J. Am. Chem. Soc. 1973, 95, 2697. Reich, H. J.; Wollowitz, S.; Trend, J. E.; Chow, F.; Wendelborn, D. F. J. Org. Chem. 1978, 43, 1697.
- 20. Reich, H. J.; Peake, S. L. J. Am. Chem. Soc. 1978, 100, 4888.
- The mp (91.5-93 °C), [α]_D [+23.4° (25 °C, c=0.77, CHCl₃)], and ¹H and ¹³C NMR spectra of synthetic 27 match those in the literature: Nicotra, F.; Panza, L.; Ronchetti, F.; Russo, G. Gazz. Chim. Ital. 1989, 119, 577, and refs. therein. Ogawa, S.; Shibata, Y.; Nose, T.; Suami, T. Bull. Chem. Soc. Jpn. 1985, 58, 3387. See also ref. 1.

(Received in USA 11 November 1991)